

Supporting Shared Resource Usage for a Diverse User

Community: the OSG Experience and Lessons Learned

Gabriele Garzoglio
1
, Tanya Levshina, Mats Rynge

‡
, Chander Sehgal*, Marko Slyz*

* Computing Sector, Fermi National Accelerator Laboratory, Batavia, IL

E-mail:{garzoglio, tlevshin, cssehgal, mslyz}@fnal.gov

‡ Information Sciences Institute (ISI), Marina del Rey, CA

E-mail: rynge@isi.edu

Abstract. The Open Science Grid (OSG) supports a diverse community of new and existing
users in adopting and making effective use of the Distributed High Throughput Computing

(DHTC) model. The LHC user community has deep local support within the experiments.

For other smaller communities and individual users the OSG provides consulting and
technical services through the User Support area. We describe these sometimes successful

and sometimes not so successful experiences and analyze lessons learned that are helping us

improve our services. The services offered include forums to enable shared learning and
mutual support, tutorials and documentation for new technology, and troubleshooting of

problematic or systemic failure modes. For new communities and users, we bootstrap their

use of the distributed high throughput computing technologies and resources available on the

OSG by following a phased approach. We first adapt the application and run a small
production campaign on a subset of "friendly" sites. Only then do we move the user to run

full production campaigns across the many remote sites on the OSG, adding to the

community resources up to hundreds of thousands of CPU hours per day. This scaling up
generates new challenges – like no determinism in the time to job completion, and diverse

errors due to the heterogeneity of the configurations and environments – so some attention is

needed to get good results. We cover recent experiences with image simulation for the Large

Synoptic Survey Telescope (LSST), small-file large volume data movement for the Dark
Energy Survey (DES), civil engineering simulation with the Network for Earthquake

Engineering Simulation (NEES), and accelerator modeling with the Electron Ion Collider

group at BNL. We will categorize and analyze the use cases and describe how our processes
are evolving based on lessons learned.

1. Introduction

The Open Science Grid (OSG) is a consortium of more than 100 institutions including universities, national
laboratories, and computing centers. OSG fosters scientific research and knowledge supporting the

computational activities of more than 80 communities. [1] Because in the OSG model resources are

federated, when some resources are idle at a particular institution they can be used by other communities.

This use of resources is unscheduled and, therefore, referred to as opportunistic. The OSG User Support
group helps communities port their computing operations to OSG opportunistic resources.

1 To whom any correspondence should be addressed.

OSG primarily supports running many simultaneous jobs that don't need low-latency communication to

other jobs. This paradigm is called Distributed High Throughput Computing (DHTC). Some applications

can't easily be made to fit this paradigm, and may run better on supercomputers. Other applications are more
naturally suitable for DHTC. Porting these applications to the OSG consists in the determining the best

sequence of Grid service invocations and processing steps, called a workflow, that allow the application to

best exploit the OSG resources.
The capabilities of the standard Grid infrastructure will handle many applications using a simple,

commonly used workflow. [2] At the other extreme, some applications may have complicated requirements

that should be handled with specialized software. [3] This paper describes the porting of applications to use

Grid workflows ranging from low to medium complexity. These might serve as patterns for porting
applications with similar requirements.

2. Outline of Resources and Software Available on OSG

The OSG computing infrastructure consists of a collection of institutions, called sites. Each typically has one
or more cluster of computers. There is significant latitude in how OSG sites are configured, but nevertheless

some environments are more common than others.

2.1. Job Management
Sites expose their resources for external access through standard Grid interfaces, in particular GRAM. [4]

There are several tools that allow the use of these resources; however, because of its flexibility and

reliability, Condor-G [5] is among the most used for submitting and managing jobs on the OSG.

Condor is often used in conjunction with the glidein Workload Management System (glideinWMS) [6].
Using Condor-G to interact with the sites, glideinWMS submits placeholder jobs, or pilots, that reserve

worker nodes for a specific community. This mechanism effectively creates a virtual batch system that

provides transparent access to computers at diverse sites throughout the Grid. This is called an overlay batch
system since it runs on the various batch systems present at the sites.

There are a large number of applications that Condor and glideinWMS support with no special effort.

Among the services available, Condor provides mechanisms to transfer data. Because of the typical load on

OSG servers and associated networks, these mechanisms seem to work best if the amount of data is less than
about 1 GB per job. To overcome this limitation we adopt other methods, discussed in the next sections.

2.2. Data Transfer Methods

One of the main non-Condor-based data transfer methods is gridFTP. [7] This service adds Grid security on
top of the ftp transfer protocol. More than ftp and other standard protocols such as scp, however, gridFTP

supports a wide variety of configuration options to tune its performance over networks with different

characteristics.
gridFTP is often used as part of some larger system. One such system typical in OSG is the Storage

Resource Manager (SRM). [8] SRM queues up transfer requests to a site. It then dispatches them to a

network of gridFTP servers, effectively implementing site-level load balancing and network throttling.

Another such system is Globus Online (GO) [9], which automatically resumes failed transfers, optimizes the
gridFTP parameters to minimize transfer time, implements community-level load balancing of gridFTP

servers, and provides an easy mechanism ("Globus Connect" [10]) to install a transfer client on a user's PC.

Another method to transfer data is with http, possibly through a SQUID proxy. [11] The SQUID proxy
can automatically cache input files at a site, reducing the overall network traffic, although it does not have a

mechanism to throttle the transfers.

2.3. Site Storage and Data Management
The following storage options are typically available to a job:

 The local disk on the worker node where the job is running: Condor usually transfers data to this

storage location. In OSG, this space should be at least 10GB and is typically more.

 A shared file system for moderate amounts of data: These are accessible to jobs through environment

variables such as $OSG_APP and $OSG_DATA [12] via a POSIX interface. From outside the site,

these areas are accessible through gridFTP or SRM interfaces. This space is intended mainly for pre-

staging data before the jobs run.

 A Storage Element [13]: this is often deployed as a disk-based storage with an SRM interface and,

sometimes, a POSIX interface for internal access. At large sites, the deployment is typically more

complex, supporting petabyte-sized areas with tape-backed storage and community-oriented usage

policies. A typical use case for this space is storing the large amounts of output data from the jobs.
Note that data stored by opportunistic VOs here may eventually be deleted to make room for more.

It is possible to run data transfer jobs or to directly use the data transfer methods discussed above to move

data to these locations; however, the management of such transfers can soon become very complicated when

a lot of sites are involved. To automate these processes, some communities have adopted data management
software such as the OSG Match Maker (OSGMM) [14]. OSGMM would periodically use Condor to run data

synchronization tasks at all sites of interest to the community. Other large communities with data-intensive

needs instead rely on community-specific data management systems that interact with OSG storage through
the standard interfaces.

3. Adapting an Application for OSG

When developing a workflow for an application to run on OSG, there are some common considerations
and limitations to note. [1]

3.1. Application Portability

The operating system on the nodes varies from site to site but is typically Scientific Linux 5 (SL5) for 64 bit

architectures, with SL6 emerging as an alternative. Typically, applications can rely only on the standard
libraries that come with the operating system. Any non-standard library must be sent with the job, or the jobs

must be restricted to run on only those worker nodes with the libraries.

Applications may run from different directories at different sites so they should use relative paths or
standard OSG environment variables (such as $OSG_APP and $OSG_DATA – section 2.3) to locate any

files that they need. Also, the application should be ready to handle file system paths that may be much

longer than on non-grid computers.

Finally, applications that rely on pre-staging executable to sites should assume that the distribution
directories are read-only. Applications that use the distribution areas as temporary scratch space cannot

properly work in a cluster environment where multiple applications instances run concurrently.

3.2. Job Interruption
Often, by policy a batch system interrupts a job after one or two days of continuous running. This is typically

referred to as eviction. To maximize the probability of completion, we recommend running jobs for less than

12 hours. Some sites offer batch system queues that have longer time deadlines and make them available for
opportunistic use.

Sites make available opportunistic cycles under the premise that the communities owning the resources

are sometimes underutilizing them. These idle cycles are made available to OSG for the benefit of the

consortium. The priority of a job running opportunistically is always lower than that of the jobs of
communities who own the resources. When higher priority jobs are submitted, irrespectively of how long the

opportunistic job has been running, it is generally interrupted immediately or within a day. This effect is

referred to as pre-emption. [30]
By default, glideinWMS automatically resubmits jobs that are interrupted, typically to a different site. For

this to work, jobs running on opportunistic cycles need to run without side effects – like modifying a

database – or to be able to reverse them. Running opportunistically gives access to additional resources, but
requires special arrangements to support long execution times. For example, by using queues that allow

running long jobs.

3.3. Other Resource Constraints

OSG users need to be cognizant of a few more constraints of OSG resources. [15]

OSG implements a DHTC model, whereby communications between processes tend to be high-latency.
Heavily parallel computations are restricted to run on single multi-core worker nodes.

The RAM available to each job is about 2 GB on the typical worker node. This limitation is typically not

strictly enforced, but jobs that go over the quota may crash the node or end up being evicted.
Local scratch space is limited to a minimum of 10 GB per slot. Jobs are encouraged to clean up after

execution.

3.4. Concurrent Application Instances

Scaling up an application to run many simultaneous instances on the grid requires more attention to
designing and implementing a workflow. The following workflow metrics are especially important:

 Aggregate wall time: the User Support group coordinates activities among opportunistic users. The

total execution time of a computational campaign is an important parameter to identify a potential

shortage of opportunistic cycles.

 Aggregate data transfer: the amount of data to transfer for input, output, and executables tends to

dictate the type of storage strategy for the given workflow.

 Number of steps in workflow: for some applications, increasing the number of workflow steps can

reduce the calendar time that each job needs, thus fitting the workflow within the typical time

limitation at sites.

 For complex workflows, good bookkeeping becomes crucial. This includes keeping track of input

files processed, jobs failed that need resubmission after fixing the application, and output data

location. The bookkeeping can be the most difficult part of solving a particular problem.

4. Individual Projects

This section describes the workflow developed in the past two years for some new communities using the
OSG. The projects are roughly in order from the simplest to the most complicated workflow.

The following figure and table is intended to give a sense of scale of the possible workflows. Similar

values of these metrics should ideally lead to similar workflows but, as discussed in each section, the
workflows may be different because we did not know all their limitations at the time. For comparison, we

also show data for US CMS and for D0’s runs on OSG. Their data is for one calendar day of operations,

which puts them on the same scale as the other OSG projects. Note, though, that the OSG projects
accumulated their statistics over the course of months.

Table 1. Table of computational metrics from Section 3.4 for some OSG communities. The time and

data transfer numbers are estimates from smaller scale tests, the users logs, checking the OSG Gratia

Server, and discussions with representatives from experiments.

Project Workflow
Steps

Job
Count

Wall time
(h)

Data
(TB)

Hours per
job

Pheno at SLAC 1 9,000 100,000 1.9 11

EIC 1 158,000 599,000 3 4

LSST Simulation 380 380,000 909,000 5 7
NEES/OpenSees 1 17,000 509,000 12 29

DES (1 day) 1 300 5,000 5.4 16

US CMS (1 day) 10 102,000 519,000 50 5
D0 (non-local) (1 day) 1 18,000 130,000 1 7

Figure 1: A graphical representation of the data in table 1.

4.1. EIC

The Electron Ion Collider (EIC) is a proposed facility at the Brookhaven National Laboratory for studying
the structure of nuclei. To prepare the accelerator design, physicists are using an event generator for

Electron/Ion collisions, which requires a pre-calculated table of collision amplitudes. The target of this

production campaign on the Grid is calculating these amplitudes, a computationally challenging task. [16]

4.1.1. Steps in workflow. The EIC workflow is a fairly straightforward use of Condor and glideinWMS. The
jobs were short, about 4 hours each, so evictions and pre-emptions did not occur frequently. The main

challenge was making available a large file, about 1 GB, to each job.

Figure 2: Illustration of a simple workflow with pre-staged data. The numbers here

correspond to the steps explained in the text below

1. (Only once) Pre-stage a 1GB read-only file to each site's $OSG_DATA area. This way, that file does

not need to be repeatedly transferred over the wide area network.

2. Submit the jobs to the sites with the pre-staged files. Use Condor to transfer the application with the
job.

3. Jobs run and read the pre-staged files.

4. Condor transfers the output data back to the submit host.
5. User downloads the output data to their local storage.

4.1.2. Practical Considerations. The file in Step 1 of the workflow is needed by every job. We use an

OSGMM server to pre-stage this file. We also arrange for the glideinWMS pilot job [17] to indicate which

sites have the data, so that jobs can run only at those sites.
Pre-staging files to $OSG_DATA saves much redundant data movement from the submit host, but there

will still be a lot of network traffic at each site. Another disadvantage is that users need help from staff to set

up OSGMM and glideinWMS. The CVMFS system may solve both of these problems in the future. Once a
file is downloaded at a worker node, that file may be kept in a local cache for job access. CVMFS offers a

POSIX interface to the file through FUSE. [18]

These jobs require a lot of hours in aggregate, but it was possible to tune the application to run many jobs
of short duration. This fits well with the typical constraints on job duration in the OSG environment.

4.2. NEES

Members of the Network for Earthquake Engineering Simulation (NEES)[19] can use the OpenSees

application to simulate the effects of earthquakes on building structures. OpenSees was developed by the
Pacific Earthquake Engineering Research Center. [20]

This project involved studies of the 13-story National Earthquake Hazards Reduction Program (NEHRP)

building model. In particular, the computational campaign did a probabilistic seismic demand hazard analysis
of the building and studied how the Finite Element model parameters affect the analysis. [21]

4.2.1. Steps in workflow. Each job requires a small amount of input data (~60MB) and produces about 1.5GB

of output data on average. To handle this, we chose a simple Grid workflow with Condor handling jobs and

I/O followed by the use of Globus Online (GO) to transfer the data produced to the user data archive. In
detail:

Figure 3: Diagram of NEES workflow.

1. Use Condor/glideinWMS to submit the OpenSees simulation application to sites. Condor transfers

the input data and then starts the jobs running.

2. Use Condor to return the data to the submit host.
3. Use GO to transfer the data back to the user’s archive.

This workflow is actually simpler than the one for EIC, but had some difficulties as discussed below.

4.2.2. Practical Considerations. The aggregate amount of output data turned out to be larger than originally
expected, which caused several problems:

 The submit host became overwhelmed by the large number of simultaneous transfers of data back

from the worker nodes. The solution for this was to adjust condor to restrict the number of

simultaneous transfers.

 Data transfer was hindered by a faulty network cable. Eventually, the site administrators found and

fixed this. We used basic network utilities (such as iperf) to expose the problem.

 There was not enough disk space on the submit host. The administrators agreed to install more.

 The user initially had external hard disks as a data archive. Their USB interfaces were not fast

enough to keep up with the rate of data transferred over the network. The user ended up installing

internal drives.

Fixing all of these issues made the above workflow successful enough to carry out the research. The
workflow for the Phenomenology project discussed below, however, would have been more appropriate

workflow for this case.

Another problem was that the OpenSees jobs could sometimes execute for longer than a day – forty hours
– and experienced many preemptions and evictions. We experimented with ways of directing jobs to less

busy sites, with mixed results.

4.3. SLAC Phenomenology Research

The phenomenology group at SLAC ran an application called Sherpa [22] that does multi-particle quantum
chromodynamics calculations using Monte Carlo methods. One result of this work was performing test runs

for simulations that will help in searches for new physics. [23]

4.3.1. Steps in workflow. We implemented a workflow with the following steps:

Figure 4: Diagram of SLAC Phenomenology workflow.

1. (Only once) Stage software to each site's $OSG_APP area.

2. Use Condor/glideinWMS to submit the jobs to the sites and transfer input data to the scratch space

on the worker nodes. When each job is done Condor transfers output data to the local Storage
Element at the site where it ran. It does this using either an SRM [24] or POSIX (the unix cp

command) interface.

3. When the runs are finished, users move the output data directly from the Storage Elements at each
site to their local archive.

4.3.2. Practical Considerations. The main feature of this workflow is that there can be a fairly large amount

of output data produced. After the experience with OpenSees, we decided to use the distributed workflow

described above, where the data from the jobs that run at each site stays at that site until the user later
downloads it at a reasonable rate. This spreads out the load compared to returning all the data to just a single

server. An additional feature of this workflow is that SRM will only process as many requests as it can

handle, and will queue up the rest, protecting the hosting machine from system crashes. [25]
The current workflow is implemented with custom scripts. Instead it may be easier to use iRODS [26] to

manage this data storage and movement.

4.4. DES
To better understand the properties of dark energy, the Dark Energy Survey (DES) is planning to collect and

process images of the night sky. [27][28]

The DES workflow has run only on a small scale on the Grid, but larger runs are being prepared.

Currently a workflow similar to the one used for Phenomenology is under consideration: worker nodes
produce data which they then move to a storage element at the site. Then a separate step moves the data to

the experiment's long-term storage.

4.4.1. Practical Considerations. Each job needs to transfer a lot of data for input and output. If many jobs
start or finish at once then this could overwhelm the network and storage bandwidth. It should help to stagger

the job starts to reduce peaks in the transfer rates.

The processing for one exposure may take longer than the application requirements allow. This may

require simultaneously processing different parts of the exposure, which would complicate the workflow and
would require transferring even more data.

4.5. LSST Simulation

The Large Synoptic Survey Telescope (LSST) will image a large area of the sky with each exposure. This
will help it in accomplishing its science missions [29,p.2]:

1. Probing dark energy and dark matter

2. Taking an inventory of the solar system
3. Exploring the transient optical sky

4. Mapping the Milky Way

One of the main features of the telescope is a 3.2 Gigapixel camera, which is anticipated to produce about

15TB of uncompressed image data a night. Another is its large mirror, which allows the telescope to quickly
detect faint objects in a large area of the sky. [29]

The User Support team helped the LSST collaboration port their image simulation application to the OSG.

Simulated images are used to refine and validate the data analysis software used to accomplished LSST
scientific missions. [29, Section 2.7] For one exposure the software simulates the path of 10

11
 photons from

their sources, through the atmosphere, the telescope optics, and to the CCDs.[31]

4.5.1. Steps in workflow. At a high-level, the LSST simulation of one image consists of the aggregation of
189 images, one for each camera chip, each rendered independently from one another. More in detail, for

every simulated condition of the telescope (position, time of the observation, etc.), the software produces two

images simulating two exposures of the camera (189 x 2 chip images).

The input to the simulation consists of information common to all jobs, namely a star catalog and the

focal plane configuration, and information specific to the simulated image, such as the direction of the

telescope, the speed of the wind, position of the moon, etc. The image-specific information consists of 500
MB of data and the common information of 15 GB, which we pre-installed at each site.

2

To run this simulation in the OSG environment, we mapped its computational steps to the following

workflow:
1. (Only once) Pre-stage star catalog and focal plane configuration files to OSG sites (15 GB).

2. Submit 1 job to trim the pre-staged catalog file into 189 files, one per chip in the camera.

3. Submit 2 x 189 jobs: simulate 1 image pair (same image with 2 exposures). Transfer “instance

catalog” (telescope position, wind speed, etc.) with each job.
4. Gather output, perform bookkeeping, etc. The expected output was a compressed image of 25 MB

per chip.

Figure 5: Example of the LSST workflow.

The production campaign consisted in the simulation of one night of data collection i.e. 500 image pairs

(2 camera exposures per image). With our workflow, this resulted ideally in 200,000 simulation jobs (one

chip per job) plus 500 trim jobs. Overestimating an average of 4 hours per job, this leads to a campaign
requiring 800,000 CPU hours of computation. With 2000 cores of available opportunistic resources (50,000

CPU hours/day), the campaign was estimated to take 17 days, every day producing 31 image pairs, moving

50 GB of input and 300 GB of output for a total of 5 TB and 400,000 files.

4.5.2. Practical Considerations. The LSST binaries were not ready for running on the Grid. We had to work
with the LSST simulation team to address the following issues

 The application assumed a writable software distribution, not supported on the Grid.

 The application assumed path-lengths too short for the Grid environment.

 The orchestration script was not properly propagating error codes from the programs it managed.

The typical failures at sites resulted from jobs requiring more memory than the batch system allotted and

from the storage being unavailable due to maintenance at some of the most productive sites. The disk quota
at the submission machine was initially limited.

Despite these challenges, the actual timeline and campaign characteristics were not significantly different

from the theoretical ones discussed above.
The LSST workflow distinguished itself mainly because of the complexity of the workflow stemming

from the need to preprocess (trim) the job input. The pre-staging of the large catalog file to all sites was also

a challenge that the new version of the workflow run at Purdue has overcome.

To validate our results, we compared the images simulated on the Grid with references produced by the
standard production mechanisms of the LSST simulation team. 99% of the images were identical, and the

differences on the remaining 1% (14 chips) could be explained by issues in the comparison process. All in

2 The information necessary for the simulation of each job is now extracted before running the workflow and is shipped

with every job, rather than being pre-installed at each site.

all, the production campaign was a success and popularized the strategy of using OSG resources within the

LSST community.

5. Conclusions
The Open Science Grid User Support team assists new communities in porting their applications to run on

OSG. By carefully choosing workflows, it is possible to successfully handle computations from a wide

variety of fields on the OSG. These can require fairly large amounts of CPU time and data transfer. By
providing access to its opportunistic resources, OSG fosters the production of scientific knowledge at

minimal cost to the communities in the consortium.

With more experience and with the maturing of the middleware we hope that the range of problems that

are straightforward to run on OSG continues to increase.

6. Acknowledgments

Fermilab is operated by the Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with

the United States Department of Energy.
The Open Science Grid (http://www.opensciencegrid.org) is funded by the National Science Foundation

and the Office of Science, Department of Energy (DOE).

We're grateful to help from Oliver Gutsche, Stefan Hoeche, Burt Holzman, Adam Lyon, Derek Weitzel,
the system administrators at RENCI and UCSD, the DES Data Management group, and all our users.

7. References

[1] "What is the Open Science Grid?", https://twiki.grid.iu.edu/bin/view/Documentation/WhatIsOSG, rev.

37, accessed 5/31/12.
[2] "An Introduction for Grid Users", https://twiki.grid.iu.edu/bin/view/Documentation/UsingTheGrid, rev.

65, accessed 5/31/12

[3] W. Chen, E. Deelman, "Partitioning and Scheduling Workflows across Multiple Sites with Storage
Constraints", 9th International Conference on Parallel Processing and Applied Mathematics (PPAM

2011), Poland, Sep 2011. http://www.isi.edu/~wchen/papers/spc-final.pdf

[4] "Grid resource allocation manager", http://en.wikipedia.org/wiki/Grid_resource_allocation_manager,

accessed 5/31/12
[5] "Condor Web Page", http://research.cs.wisc.edu/condor/, accessed 5/31/12

[6] I. Sfiligoi, "glideinWMS - A generic pilot-based Workload Management System" 2008 J. Phys.: Conf.

Ser. 119 062044, http://iopscience.iop.org/1742-6596/119/6/062044
[7] “gridFTP” , http://www.globus.org/toolkit/docs/latest-stable/gridftp/, accessed 5/31/12

[8] “Storage Resource Manager”, http://en.wikipedia.org/wiki/Storage_Resource_Manager", 12/17/11,

accessed 5/31/12
[9] “Globus Online”, https://www.globusonline.org/, accessed 5/31/12

[10] “Globus Connect”, https://www.globusonline.org/globus_connect/, accessed 5/31/12

[11] "Using HTTP on the OSG", https://twiki.grid.iu.edu/bin/view/Documentation/OsgHttpBasics, rev. 20,

accessed 5/31/12
[12] "Local Storage Configuration",

https://twiki.grid.iu.edu/bin/view/ReleaseDocumentation/LocalStorageConfiguration, rev. 54, accessed

5/31/12
[13] "Storage Infrastructure Software",

https://twiki.grid.iu.edu/bin/view/Documentation/StorageInfrastructureSoftware, rev.43, accessed

5/31/12
[14] "OSG MM - The Open Science Grid Match Maker", http://osgmm.sourceforge.net/, accessed 5/31/12

[15] "Helpful Hints for Running At-Scale on the OSG",

https://twiki.grid.iu.edu/bin/view/Documentation/GoldenRulesForOSGUsage , rev. 14, accessed 5/31/12

[16] Tobias Toll, "Electron Ion Collider Simulations on OSG",
https://twiki.grid.iu.edu/bin/view/Management/NovDec2011, accessed 5/31/12

https://twiki.grid.iu.edu/bin/view/Documentation/WhatIsOSG
https://twiki.grid.iu.edu/bin/view/Documentation/UsingTheGrid
http://www.isi.edu/~wchen/papers/spc-final.pdf
http://en.wikipedia.org/wiki/Grid_resource_allocation_manager
http://research.cs.wisc.edu/condor/
http://iopscience.iop.org/1742-6596/119/6/062044
http://www.globus.org/toolkit/docs/latest-stable/gridftp/
http://en.wikipedia.org/wiki/Storage_Resource_Manager
https://www.globusonline.org/
https://www.globusonline.org/globus_connect/
https://twiki.grid.iu.edu/bin/view/Documentation/OsgHttpBasics
https://twiki.grid.iu.edu/bin/view/ReleaseDocumentation/LocalStorageConfiguration
https://twiki.grid.iu.edu/bin/view/Documentation/StorageInfrastructureSoftware
http://osgmm.sourceforge.net/
https://twiki.grid.iu.edu/bin/view/Documentation/GoldenRulesForOSGUsage
https://twiki.grid.iu.edu/bin/view/Management/NovDec2011

[17] "GlideinWMS – Custom Scripts",

http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/doc.prd/factory/custom_scripts.htm

l, accessed 5/31/12
[18] P. Buncic, "CernVM – a virtual software appliance for LHC applications", Journal of Physics:

Conference Series 219 (2010), CHEP 2009, http://iopscience.iop.org/1742-6596/219/4/042003/pdf/1742-

6596_219_4_042003.pdf
[19] "NEES Overview", http://nees.org/aboutnees/overview, accessed 5/31/12

[20] "The Open System for Earthquake Engineering Simulation",

http://opensees.berkeley.edu/OpenSees/home/about.php, accessed 5/31/12

[21] A. Barbosa, J. Conte, J. Restrepo, "Running OpenSees Production for NEES on OSG",
https://twiki.grid.iu.edu/bin/view/Management/Oct2011Newsletter, accessed 5/31/12

[22] "Sherpa", http://www.sherpa-mc.de/, accessed 5/31/12

[23] S. Höche, F. Krauss, M. Schönherr, F. Siegert, "W+n-jet predictions with MC@NLO in SHERPA",
SLAC-PUB-14859,IPPP-12-03,DCPT-12-06,LPN12-026,MCNET-12-01,FR-PHENO-2012-001,

http://inspirehep.net/record/1086175

[24] "Storage Resources", https://twiki.grid.iu.edu/bin/view/Documentation/Release3.NavAdminStorage,
rev. 35, accessed 5/31/12.

[25] I. Bird et al, "SRM Joint Functional Design Summary of Recommendations", https://sdm.lbl.gov/srm-

wg/doc/SRM.Joint.Functional.Design.Jan2002.pdf, accessed 5/31/12

[26] "IRODS:Data Grids, Digital Libraries, Persistent Archives, and Real-time Data Systems",
https://www.irods.org/index.php/IRODS:Data_Grids,_Digital_Libraries,_Persistent_Archives,_and_Real

-time_Data_Systems, accessed 5/31/12

[27] The Dark Energy Survey website, http://www.darkenergysurvey.org/, accessed 5/31/12
[28] "The Data Management System", http://www.darkenergysurvey.org/DECam/data-manage.shtml,

accessed 5/31/12

[29] Ž. Ivezić et al., “LSST: From Science Drivers to Reference Design and Anticipated Data Products”,

http://arxiv.org/abs/0805.2366, version 2.0.9 of June 4, 2011.
[30] "Brief Analysis on Preemption Handling in OSG",

https://twiki.grid.iu.edu/bin/view/VirtualOrganizations/PreemptionHandling_OSG, rev. 3, accessed

5/31/12

[31] “LSST Image Simulation”, http://lsst.astro.washington.edu/intro/overview/ , accessed 6/1/12

http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/doc.prd/factory/custom_scripts.html
http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/doc.prd/factory/custom_scripts.html
http://iopscience.iop.org/1742-6596/219/4/042003/pdf/1742-6596_219_4_042003.pdf
http://iopscience.iop.org/1742-6596/219/4/042003/pdf/1742-6596_219_4_042003.pdf
http://nees.org/aboutnees/overview
http://opensees.berkeley.edu/OpenSees/home/about.php
https://twiki.grid.iu.edu/bin/view/Management/Oct2011Newsletter
http://www.sherpa-mc.de/
http://inspirehep.net/record/1086175
https://twiki.grid.iu.edu/bin/view/Documentation/Release3.NavAdminStorage
https://sdm.lbl.gov/srm-wg/doc/SRM.Joint.Functional.Design.Jan2002.pdf
https://sdm.lbl.gov/srm-wg/doc/SRM.Joint.Functional.Design.Jan2002.pdf
https://www.irods.org/index.php/IRODS:Data_Grids,_Digital_Libraries,_Persistent_Archives,_and_Real-time_Data_Systems
https://www.irods.org/index.php/IRODS:Data_Grids,_Digital_Libraries,_Persistent_Archives,_and_Real-time_Data_Systems
http://www.darkenergysurvey.org/
http://www.darkenergysurvey.org/DECam/data-manage.shtml
http://arxiv.org/abs/0805.2366
https://twiki.grid.iu.edu/bin/view/VirtualOrganizations/PreemptionHandling_OSG

